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Stokes equations. The space discretization of the inviscid
terms of the Navier–Stokes equations is constructed fol-This paper deals with a high-order accurate discontinuous finite

element method for the numerical solution of the compressible lowing the ideas described in the works of Cockburn et
Navier–Stokes equations. We extend a discontinuous finite element al., except for the limiting procedure. As shown, for exam-
discretization originally considered for hyperbolic systems such as ple, in [6], no limiting is in fact needed even for inviscid
the Euler equations to the case of the Navier–Stokes equations by

flows, provided that the solution is sufficiently smooth. Thetreating the viscous terms with a mixed formulation. The method
space discretization of the viscous terms is constructed bycombines two key ideas which are at the basis of the finite volume

and of the finite element method, the physics of wave propagation resorting to a mixed finite element formulation. How-
being accounted for by means of Riemann problems and accuracy ever, instead of using the Raviart–Thomas formulation as
being obtained by means of high-order polynomial approximations in [13, 14], we approximate both the unknown and its
within elements. As a consequence the method is ideally suited to

gradient in the same discontinuous function space (seecompute high-order accurate solution of the Navier–Stokes equa-
Section 2).tions on unstructured grids. The performance of the proposed

method is illustrated by computing the compressible viscous flow The method combines different features commonly asso-
on a flat plate and around a NACA0012 airfoil for several flow re- ciated to finite element and to finite volume methods. As
gimes using constant, linear, quadratic, and cubic elements. Q 1997 in classical finite element methods, in fact, accuracy is ob-
Academic Press

tained by means of high-order polynomial approximation
within an element rather than by wide stencils as in the
case of finite volume schemes. The physics of wave propa-1. INTRODUCTION
gation is, however, accounted for by solving the (approxi-
mate) Riemann problems that arise from the discontinuousThe discontinuous Galerkin method was introduced by
representation of the solution at element interfaces. In thisReed and Hill [23] and successively analyzed by Lesaint
respect the method is therefore similar to a finite vol-and Raviart [17, 18] for the linear advection equation.
ume scheme.More recently, Cockburn and Shu [9, 10, 12], and Cock-

burn, Hou, and Shu [11] devised a high order accurate The discontinuous finite element method is more suit-
able than common finite volume methods to compute high-(both in space and time) total variation bounded (TVB)

‘‘Runge–Kutta discontinuous Galerkin’’ (RKDG) method order accurate solutions on unstructured grids. In fact,
high-order accurate finite volume methods are constructedfor the solution of nonlinear systems of conservation laws.

The TVB property of the RKDG method is enforced by by employing wider stencils to compute fluxes across cell
interfaces. In practice, due to the presence of points alignedmeans of a ‘‘slope limiting’’ procedure designed to control

the deviation from the element mean of the numerical along grid directions, this approach is straightforward
only when using structured grids. Recently some suc-solution. Extensions of the RKDG method to systems of

equations involving second-order and third-order opera- cessful high-order accurate finite volume schemes for un-
structured meshes have nevertheless been developedtors have been recently proposed by Cockburn et al. [13,

14]. (see, for example, Barth [1], Harten and Chakravarthy
[15]). Unfortunately, high-order finite volume methodsIn this work we extend a high-order discontinuous finite

element method for the numerical solution of the Euler for unstructured grids are rather complex algorithms. On
the contrary, high-order accurate discontinuous finiteequations, which has proven to be very effective in several

test cases [2–4], to the case of the compressible Navier– element method discretizations are constructed by means
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268 BASSI AND REBAY

of high order polynomials within elements, which poses fv(u, =u)
no problems with structured as well as with unstructured
grids.

The outline of the present work is as follows. In Section
2 we describe the discontinuous Galerkin formulation for

5 e 5
0

2ux 1 l(ux 1 vy)

vx 1 uy

u[2ux 1 l(ux 1 vy)] 1 v(vx 1 uy) 1 c/Pr ex

6, (3)the Navier–Stokes equations. For completeness, we briefly
describe the method also for the inviscid terms of the
equations, even if their treatment follows closely that intro-
duced by Cockburn and Shu. More details can be found

gv(u, =u)in [9–12]. The performance of the method is illustrated in
Section 3 by computing the laminar viscous compressible
flow on a flat plate at M 5 0.3 and Re 5 106 and the
flow around a NACA0012 airfoil in the three different
conditions considered in the GAMM workshop [21]; i.e., 5 e 5

0

vx 1 uy

2vx 1 l(ux 1 vy)

u(vx 1 uy) 1 v[2vy 1 l(ux 1 vy)] 1 c/Pr ey

6, (4)
the subsonic case at an angle of attack a 5 108, Mach
number M 5 0.8, and Reynolds number Re 5 73; the
supersonic case at a 5 108, M 5 2, Re 5 106; and the
more difficult subsonic case at a 5 08, M 5 0.5, and Re 5
5000. Numerical solutions using constant, linear, quadratic, where e is the dynamic viscosity coefficient, Pr is the
and cubic elements are provided. Section 4 is devoted to Prandtl number, and, using the Stokes hypothesis, l 5 2Sd.
the conclusions. The derivatives of the primitive variables such as ux ,

uy , ... can be easily computed by expanding the derivatives
of the conservative variables. For example, (ru)x 5
rxu 1 r ux , and, therefore, ux 5 (1/r)[(ru)x 2 rxu].2. DISCONTINUOUS GALERKIN FORMULATION

By multiplying by a ‘‘test function’’ v and integrating
We consider the two-dimensional Navier–Stokes equa- over the domain V we obtain the weighted residual formu-

tions written in conservation form lation,

­tu 1 = · Fe(u) 2 = · Fv(u, =u) 5 0, (1) E
V

v­tu dV 1 E
V

v= · F(u, =u) dV

equipped with suitable initial-boundary conditions. The 5 O
E
FE

E
v­tu dV1 E

E
v= · F(u, =u) dVG (5)

conservative variables u and the cartesian components
fe(u) and ge(u) of the inviscid (Euler) flux function Fe(u)

5 0 ;v,are given by

where F(u, =u) 5 Fe(u) 2 Fv(u, =u), and the integrals over
the domain V have been expanded into the sum of integrals
over a collection of nonoverlapping elements hEj, which

u 5 5
r

ru

rv

re
6, fe(u) 5 5

ru

ruu 1 p

rvu

rhu
6, ge(u) 5 5

rv

ruv

rvv 1 p

rhv
6, have been assumed to be triangles. By integrating by parts

each elemental contribution of eq. (5) which contains the
divergence of the Navier–Stokes flux function, we obtain
the weak formulation

(2)

O
E
FE

E
v­tu dV 1 R

­E
vF(u, =u) · n dswhere r is the fluid density, u and v are the velocity compo-

nents, p is the pressure, and e is the total internal energy
per unit mass. The total enthalpy per unit mass h is defined 2 E

E
=v · F(u, =u) dVG5 0 ;v,

(6)

as h 5 e 1 p/r. By assuming that the fluid obeys to the
perfect gas state equation, p can be computed as p 5
(c 2 1)r[e 2 (u 2 1 v 2)/2], where c indicates the ratio be- where ­E denotes the boundary of element E.

A discrete analogue of Eq. (6) is obtained by consider-tween the specific heats of the fluid.
The cartesian components fv(u, =u) and gv(u, =u) of the ing, within each element, only the functions uh and vh

given byviscous flux function Fv(u, =u) are given by
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constructed with a technique traditionally used in upwind
u(x, t)huE 5 On

i51
Ui(t)f k

i (x),
(7)

finite volume schemes. The flux function Fe(u) · n appearing
in the second term of Eq. (8) is in fact replaced by a

v(x)huE 5 On
i51

Vif
k
i (x) ;x [ E, numerical flux function he(u2, u1; n) which depends on the

internal interface state u2, on the neighboring element
interface state u1, and on the direction of the normal unit
vector n. In order to guarantee the formal accuracy ofwhere the expansion coefficients Ui(t) and Vi denote the
the scheme, the numerical flux is required to satisfy thedegrees of freedom of the numerical solution and of the
consistency relationstest function in element E, and the n (shape) functions

f k
i are a base for the polynomial functions P k. Note that

there is no global continuity requirement for uh and vh , he(u, u; n) 5 F(u) · n, he(u, v; n) 5 2he(v, u; 2n). (10)
which are therefore discontinuous functions across element
interfaces. By admitting only the functions uhuE and vhuE , There are several numerical flux functions satisfying the
the summation in Eq. (6) reduces to above criteria such as the Godunov, Lax–Friedrichs, Roe,

Engquist–Osher, or HLLE (Harten, Lax, Van Leer, Ein-
feldt). In this work all the computations have been per-d

dt
E

E
vhuh dV 1 R

­E
vhF(uh , =uh) · n ds

(8)
formed with the ‘‘exact’’ Godunov flux.

The spatial discretization of the viscous term of the Na-
vier–Stokes equations is constructed by resorting to a2 E

E
=vh · F(uh , =uh) dV 5 0 ;vhuE .

mixed finite element formulation. The first-order deriva-
tives of the conservative variables appearing in the defini-
tions (3) and (4), in fact, lead to second-order derivativesEquation (8) must be satisfied for any element E and for
when we evaluate the divergence of the viscous fluxes.any function vhuE . However, within each element, the vh
However, second-order derivatives cannot be accommo-are a linear combination of n shape functions f k

i , and Eq.
dated directly in a weak variational formulation using a(8) is therefore equivalent to the system of n equations,
discontinuous function space. We therefore regard the gra-
dient of the conservative variables =u 5 S(u) as auxiliary
unknowns of the Navier–Stokes equations, which ared

dt
E

E
f k

j uh dV 1 R
­E

f k
j F(uh , =uh) · n ds

therefore reformulated as the following coupled system
for the unknowns S and u,

2 E
E

=f k
j · F(uh , =uh) dV 5 0, (9)

1 # j # n. S 2 =u 5 0

­tu 1 = · Fe(u) 1 = · Fv(u, S) 5 0.
(11)

Notice that, when evaluating the boundary integral of
System (11) can be approximated by means of a discon-Eq. (9) at an internal interface, the flux terms are not

tinuous finite element formulation in a way similar to thatuniquely defined due to the discontinuous function approx-
employed for the inviscid part of the equations. The useimation. It is therefore necessary to substitute the Navier–
of an explicit time-stepping scheme greatly simplifies theStokes flux function F with an interface numerical flux
mixed finite element formulation, since it allows a decou-function H which, in general, depends on both interface
pled solution of system (11). At each time level n, in fact,states and which introduces a coupling between the un-
we first compute a discontinuous approximation of S n byknowns of neighboring elements which would be otherwise
solving the first equation of the system and then use u n

completely missing. It is possible to show that Eq. (9) with
and S n to evaluate the inviscid and viscous fluxes of theF replaced by the numerical flux function H is nothing but
second equation which is then advanced in time.the Galerkin method applied to just one element E with

The weak formulation of the first equation of systemweakly prescribed boundary conditions obtained from the
(11) isneighboring elements of E if ­E > ­V 5 0 or from the

boundary conditions of the Navier–Stokes problem if ­E >
­V ? 0 (for more details see, for the case of the linear E

E
f k

j Sh dV 2 R
­E

f k
j uhn ds 1 E

E
=f k

j uh dV 5 0, (12)
advection equation, Section 9.8 of the book by C. John-
son [16]).

We first restrict our attention to the treatment of inter- where, due to the discontinuous function approximation
at internal interfaces, the unknown uh appearing in theface integrals. The inviscid interface integral terms are
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boundary integral is not uniquely defined. In analogy with wall boundary Sbc is computed by prescribing the internal
gradients of all the primitive variables, except for the gradi-the procedure described for the inviscid part of the equa-

tions, it is therefore necessary to introduce a numerical ent of the internal energy, which is modified so as to satisfy
the boundary condition =e · n 5 0. For inflow/outflowflux function Hs(u2, u1; n) to replace the term uhn. Since

we are constructing the discrete analogue of a diffusive boundaries the viscous boundary flux is instead computed
as h*v 5 hv(u2, S2, ubc , S2; n), where ubc is that used foroperator, we define the numerical flux function as the aver-

age between the two interface states, i.e., as h*e .
All the integrals appearing in the elemental equations

are evaluated by means of Gauss numerical quadratureHs(u2, u1; n) 5 As(u2 1 u1)n. (13)
formulae with a number of integration points consistent
with the accuracy required. By assembling together all theBy assembling all Eqs. (12), we obtain a system of equa-
elemental contributions the system of ordinary differentialtions which, thanks to the block diagonal structure of the
equations which govern the evolution in time of the dis-mass matrix, can be cheaply solved. The computed auxil-
crete solution can be written asiary variables Sh are then used in the weak form of the

second equation of system (11),

M
dU
dt

1 R(U) 5 0, (16)d
dt

E
E

vhuh dV 1 R
­E

f k
j Fe(uh) · n ds 2 E

E
=f k

j · Fe(uh) dV

1 R
­E

f k
j Fv(uh, Sh) · n ds (14) where M denotes the mass matrix, U is the global vector

of the degrees of freedom, and R(U) is the residual vector.
Due to the block diagonal structure of M, the time integra-2 E

E
=f k

j · Fv(uh , Sh) dV,
tion of this system can be accomplished in a very efficient
way by means of an explicit method for initial value prob-

in which, once again, the boundary integral contains flux lems. In this work we have used a two-stage Runge–
terms which are not uniquely defined. It is therefore neces- Kutta method.
sary to replace the term Fv(uh , Sh) · n with the numerical An important issue in mixed finite element formulations
flux function hv(u2, S2, u1, S1; n), defined in a ‘‘centered’’ is the choice of the approximation space for the auxiliary
way as variables Sh with respect to the original ones, i.e., the con-

servative variables uh . In fact, an inconsistent choice of
hv(u2, S2, u1, S1; n) 5 As[(Fv(u2, S2) 1 Fv(u1, S1)] · n. (15) the two approximation spaces may result in a solution

which is polluted by spurious modes. We have not tried
We now describe the treatment of the boundary integrals to address this issue from a theoretical point of view. In

when ­E is part of sh . In this case the boundary fluxes practice we have obtained very good results by using the
must be chosen in order to weakly prescribe the boundary same type of approximations for both uh and Sh . It is
conditions of the problem and will be denoted by h*e (ubc), important to point out that, even if both uh and Sh have
H*s (ubc), and h*v (ubc , Sbc), where ubc and Sbc are the bound- been chosen in the same function space (say that of
ary conditions of the problem and h*e , H*s , and h*v are the piecewise discontinuous polynomial P k of order k inside
boundary fluxes for the inviscid contribution to the Navier– each element), the auxiliary variable Sh can, however, be
Stokes equations and for Eqs. (12) and (14), respectively. regarded as the sum of an ‘‘interface contribution’’ S (int)

h
At solid walls h*e is equal to the pressure contribution [ P k plus a ‘‘volume contribution’’ S (vol)

h [ P k21. Since
of the inviscid flux function in the direction normal to the S(int)

h vanishes when the jump of uh at the element interfaces
wall, the pressure being taken from the internal boundary is zero, the auxiliary variable Sh [ P k21 when the solution
state. At inflow/outflow boundaries, h*e is the numerical uh [ P k is continuous.
flux function he(u2, ubc ; n), where u2 is the internal bound- In order to define S(int)

h and S(vol)
h , it is necessary to rewrite

ary state at the current time level, and ubc is computed by the numerical flux function (13) as u2 1 (u1 2 u2)/2. By
imposing the available data and the Riemann invariant inserting this expression into the boundary integral of Eq.
associated to outgoing characteristics. The same value of (12), we obtain
ubc used for h*e is also used to define H*s 5 ubcn.

The viscous boundary flux at solid walls is computed as
h*v 5 Fv(ubc , Sbc) · n, where ubc is that used for h*e . If there E

E
f k

j Sh dV 5 R
­E

f k
j u2n ds 1 R

­E
f k

j
1
2

(u1 2 u2)n ds

(17)are no boundary conditions on =u · n, we set Sbc 5 S2.
When such conditions are instead prescribed, the value of

2 E
E

=f k
j uh dV.Sbc is modified accordingly. For example, at an adiabatic
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The first and the last integrals appearing on the right-hand
side of Eq. (17) can be (back) integrated by parts so as to
obtain a single volume integral, i.e.,

R
­E

f k
j u2n ds 2 E

E
=f k

j uh dV 5 E
E

f k
j =uh dV.

Equation (17) can therefore be rewritten as

E
E

f k
j Sh dV 5 R

­E
f k

j
1
2

(u1 2 u2)n ds
(18)

1 E
E

=f k
j =uh dV.

The contributions S(int)
h and S(vol)

h are given by the boundary
and by the volume integrals appearing on the right-hand
side of Eq. (18), i.e.,

E
E

f k
j S(int)

h dV 5 R
­E

f k
j

1
2

(u1 2 u2)n ds,

E
E

f k
j S(vol)

h dV 5 E
E

f k
j =uh dV. FIG. 1. Skin friction coefficient distribution along the flat plate

(Re 5 106, M 5 0.3).

These definitions show that S(int)
h [ P k, that S(vol)

h [ P k21,
and that the contribution S(int)

h is proportional to the jump
elements adjacent to the wall in the x and y directions

of u across the element interfaces. As will be shown in the
varies from Dx/L 5 0.15 3 1023, Dy/L 5 0.89 3 1024 at

following section, the jump of the computed solution uh the leading edge to Dx/L 5 0.13, Dy/L 5 0.23 3 1023 at
at element interfaces is indeed very small almost every-

the end of the plate. This corresponds to aspect ratios Dx/
where in the flowfield, where in practice S Q S(vol)

h [ P k21.
Dy of 1.74 and 563, respectively. The value of the nondi-

However, in those regions where the computed solution
displays significant discontinuities, the use of equal interpo-
lation for both primary and auxiliary unknowns seems to
provide more accurate results.

3. NUMERICAL EXAMPLES

We present the results obtained in the calculation of
the laminar viscous flow on a flat plate and around the
NACA0012 airfoil. The first test case is intended to test
the method for a high Reynolds number flow in a simple
geometry. In the second test, we consider three conditions
which, having been considered as validation test cases for
shock capturing Navier–Stokes codes in a GAMM work-
shop, are very well documented in the literature (see, e.g.,
[19–22]). All the computations have been performed on an
HP735/125 workstation using double precision arithmetic.

We first consider the laminar flow on the adiabatic flat
plate characterized by a freestream Mach number M 5
0.3 and by a Reynolds number based on the freestream
condition and on the plate length Re 5 106. The computa-
tions have been performed on a grid consisting of 1600
elements obtained from the triangulation of a structured
51 3 17 ‘‘H-grid’’ with 51 points along the plate and 17 FIG. 2. Logarithmic plot of the skin friction coefficient distribution

along the flat plate (Re 5 106, M 5 0.3).points in the direction normal to the plate. The size of the
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FIG. 5. Quadratic elements; Mach isolines around the NACA0012FIG. 3. Grid for the NACA0012 test case (triangulation of a 64 3

16 ‘‘O-grid’’). airfoil (Re 5 73, M 5 0.8, a 5 108).

ments, and compare the computed skin friction coefficientmensional distance from the wall to the centroid of the
elements adjacent to the wall is of order 1, except for a with the ‘‘theoretical’’ one given by the well-known Blasius

formula for the Cf distribution along a flat plate in the casefew elements near the leading edge. We present results
obtained with constant, linear, quadratic, and cubic ele- of incompressible flow.

FIG. 4. Linear elements: Mach isolines around the NACA0012 airfoil FIG. 6. Cubic elements; Mach isolines around the NACA0012 airfoil
(Re 5 73, M 5 0.8, a 5 108).(Re 5 73, M 5 0.8, a 5 108).
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FIG. 7. Cubic elements; detail of the Mach isolines around the leading
edge of the NACA0012 airfoil (Re 5 73, M 5 0.8, a 5 108). FIG. 9. Cubic elements: skin friction coefficient distribution along

the NACA0012 airfoil (Re 5 73, M 5 0.8, a 5 108).

The computed results show very good agreement with
the Blasius solution. With reference to Fig. 1, the linear computed solutions and the analytical one. However, the
plot of the skin friction coefficient along the plate does logarithmic plot of Fig. 2 puts in evidence that, in the small
not show any significant difference between the various region extending up to x/L 5 0.01 downstream from the

leading edge of the plate, high order elements are necessary
to obtain an accurate solution.

We next consider the NACA0012 test case. The compu-
tations have been performed on the relatively coarse grid
shown in Fig. 3, which is the Delaunay triangulation of a
64 3 16 ‘‘O-grid’’ distribution of points obtained by a
conformal mapping method. The larger number refers to
the number of elements distributed along the airfoil surface
and the smaller one to the number of elements in the radial
direction. The grid extends about 20 chords away from
the airfoil. The computations have been performed using
constant, linear, quadratic, and cubic elements. Note that,
in order to put in evidence the discontinuous nature of
the numerical solution, all the isolines appearing in the
following figures have been plotted without applying any
smoothing mechanism.

The first test case is that of the laminar transonic flow
at an angle of attack a 5 108, freestream Mach number of
0.8, Reynolds number based on the freestream velocity,
the airfoil chord equal to 73, and the wall temperature
equal to the freestream total temperature. The Mach iso-
lines computed with linear, quadratic, and cubic elements
are displayed in Figs. 4, 5, and 6, respectively. (See details
in Fig. 7.) As expected, the solution becomes smootherFIG. 8. Cubic elements: pressure coefficient distribution along the

NACA0012 airfoil (Re 5 73, M 5 0.8, a 5 108). and more accurate by virtue of the increased order of the
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FIG. 11. Linear elements: Mach isolines around the NACA0012 air-
FIG. 10. Cubic elements: heat flux coefficient distribution along the foil (Re 5 106, M 5 2, a 5 108).

NACA0012 airfoil (Re 5 73, M 5 0.8, a 5 108).

isolines of the numerical solutions computed by linear,
quadratic, and cubic elements, while Figures 14, 15, andpolynomial approximation when passing from linear to
16 show the pressure, skin friction, and heat flux coefficientcubic elements. Figures 8, 9, and 10 show the pressure,
distributions along the airfoil computed with cubic ele-skin friction, and heat flux coefficient distributions along

the airfoil computed with cubic elements. An estimate of
the accuracy of the computed solution is given in Table I,
which shows the comparison of the lift and drag coefficients
obtained with constant, linear, quadratic, and cubic ele-
ments, respectively. The values reported seem to indicate
that the grid used for this test case is sufficiently fine also
for linear elements.

The second test case is that of the laminar supersonic
flow at an angle of attack a 5 108, freestream Mach number
of 2, Reynolds number equal to 106, and wall temperature
equal to the freestream total temperature. A distinguishing
feature of this test is the presence of a detached bow shock
in front of the profile. Figures 11, 12, and 13 show the Mach

TABLE I

Lift (Cl) and Drag (Cd) Coefficients for the NACA0012 Airfoil

Element Accuracy Cl Cd

Constant 1st 0.5844 0.7083
Linear 2nd 0.5360 0.6611
Quadratic 3rd 0.5350 0.6589
Cubic 4th 0.5352 0.6587

FIG. 12. Quadratic elements; Mach isolines around the NACA0012
airfoil (Re 5 106, M 5 2, a 5 108).Note. Re 5 73, M 5 0.8, a 5 108.
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FIG. 13. Cubic elements; Mach isolines around the NACA0012 airfoil
FIG. 15. Cubic elements: skin friction coefficient distribution along(Re 5 106, M 5 2, a 5 108).

the NACA0012 airfoil (Re 5 106, M 5 2, a 5 108).

ments. The comments made for the Re 5 73 computation A precise quantitative comparison of the results ob-
apply also for this test case. Note in particular the increas- tained for these two test cases with those published in [21]
ingly better resolution of the bow shock obtained when is difficult because of the large scatter in the results, which
passing from linear to cubic elements. seems dependent on both the method and the grid used.

FIG. 16. Cubic elements: heat flux coefficient distribution along theFIG. 14. Cubic elements: pressure coefficient distribution along the
NACA0012 airfoil (Re 5 106, M 5 2, a 5 108). NACA0012 airfoil (Re 5 106, M 5 2, a 5 108).
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FIG. 19. Cubic elements; Mach isolines around the NACA0012 airfoilFIG. 17. Linear elements: Mach isolines around the NACA0012 air-
foil (Re 5 5000, M 5 0.5, a 5 08). (Re 5 5000, M 5 0.5, a 5 08).

values of the skin friction and heat flux coefficient distribu-However, the coefficient distributions and the lift and drag
coefficients shown in the preceding tables compare favor- tions are well captured by the present solutions.

The third and more difficult test case is that of the lami-ably with the most accurate solution (obtained on very
much finer grids) reported in [21]. In particular the peak nar subsonic flow at an angle of attack a 5 08, freestream

FIG. 20. Cubic elements: detail of the pressure isolines and of the
FIG. 18. Quadratic elements: Mach isolines around the NACA0012 grid around the leading edge of the NACA0012 airfoil (Re 5 5000,

M 5 0.5, a 5 08).airfoil (Re 5 5000, M 5 0.5, a 5 08).
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FIG. 21. Cubic elements: detail of the Mach isolines and of the grid
FIG. 23. Cubic elements: pressure coefficient distribution along thearound the leading edge of the NACA0012 airfoil (Re 5 5000, M 5 0.5,

NACA0012 airfoil (Re 5 5000, M 5 0.5, a 5 08).a 5 08).

FIG. 22. Cubic elements: detail of the Mach isolines and of the grid
around the trailing edge of the NACA0012 airfoil (Re 5 5000, M 5 0.5, FIG. 24. Cubic elements: skin friction coefficient distribution along
a 5 08). the NACA0012 airfoil (Re 5 5000, M 5 0.5, a 5 08).
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TABLE II common structured and unstructured finite volume
schemes on much finer grids.Pressure Part (Cd,p) and Viscous Part (Cd,v) of the Drag Coefficient

for the NACA0012 Airfoil
4. CONCLUSIONS

Element Accuracy Cd,p Cd,v

A high-order accurate discontinuous finite element
Constant 1st 0.03163 0.04942 method for the solution of the compressible Navier–Stokes
Linear 2nd 0.01963 0.03051

equations has been presented. The method combines theQuadratic 3rd 0.01991 0.03361
ability of all finite element methods of constructing in anCubic 4th 0.02208 0.03303
automatic and reliable way high-order approximations of

Note. Re 5 5000, M 5 0.5, a 5 08. differential problems on general unstructured meshes with
the successful upwind techniques traditionally associated
with finite volume schemes and has proven to be very

Mach number M 5 0.5, and Reynolds number equal to effective in the solution of CFD problems. Our results
5000. In this case the wall is adiabatic. The Reynolds num- show that accurate solutions on relatively coarse meshes
ber is near to the upper limit for steady laminar flow. A can be computed, provided that high-order elements are
distinguishing feature of this test case is the separation of used. General boundary conditions can be accurately and
the flow occurring near to the trailing edge which causes easily prescribed. Finally, the method has proven to be
the formation of a small recirculation bubble which extends very robust in all the test cases attempted so far.
in the near-wake region of the airfoil. Work is in progress to implement a two-equation turbu-

Figures 17, 18, and 19 show the Mach isolines computed lence model and an implicit time integration scheme to
by means of linear, quadratic, and cubic elements. The improve the efficiency of the method. In the future we also
results obtained with cubic elements are further displayed plan to further increase the potentialities of the method
in Figs. 20, 21, and 22, which show details of the flowfield by resorting to grid adaption criteria.
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